On infinite horizon switched LQR problems with state and control constraints

نویسندگان

  • Maximilian Balandat
  • Wei Zhang
  • Alessandro Abate
چکیده

This paper studies the Discrete-Time Switched LQR problem over an infinite time horizon, subject to polyhedral constraints on state and control inputs. Specifically, we aim to find an infinite-horizon hybrid-control sequence, i.e., a sequence of continuous and discrete (switching) control inputs, that minimizes an infinite-horizon quadratic cost function, subject to polyhedral constraints on state and (continuous) control input. The overall constrained, infinite-horizon problem is split into two subproblems: (i) an unconstrained, infinite-horizon problem and (ii) a constrained, finite-horizon one. We derive a stationary suboptimal policy for problem (i) with analytical bounds on its optimality, and develop a novel formulation of problem (ii) as a Mixed-Integer Quadratic Program. By introducing the concept of a safe set, the solutions of the two subproblems are combined to achieve the overall control objective. Through the connection between (i) and (ii) it is shown that, by proper choice of the design parameters, the error of the overall suboptimal solution can be made arbitrarily small. The approach is tested on a numerical example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Finite-time Control of Positive Linear Discrete-time Systems

This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...

متن کامل

A new switching strategy for exponential stabilization of uncertain discrete-time switched linear systems in guaranteed cost control problem

Uncertain switched linear systems are known as an important class of control systems. Performance of these systems is affected by uncertainties and its stabilization is a main concern of recent studies. Existing work on stabilization of these systems only provides asymptotical stabilization via designing switching strategy and state-feedback controller. In this paper, a new switching strate...

متن کامل

Switched LQR Problems in Discrete Time: Algorithms and Performance Analysis

This paper formulates and studies the quadratic regulation problem for discrete-time switched linear systems (DSLQR problem). A general relaxation framework is developed to simplify the representations of the value functions and the corresponding control strategies. Based on this framework, several efficient algorithms are proposed to solve the finite-horizon and the infinite-horizon DSLQR prob...

متن کامل

A Study of the Discrete-Time Switched LQR Problem

This paper studies the discrete-time switched LQR (DSLQR) problem based on a dynamic programming approach. One contribution of this paper is the analytical characterization of both the value function and the optimal hybridcontrol strategy of the DSLQR problem. Their connections to the Riccati equation and the Kalman gain of the classical LQR problem are also discussed. Several interesting prope...

متن کامل

Efficient NMPC of unstable periodic systems using approximate infinite horizon closed loop costing

We develop a state-of-the-art nonlinear model predictive controller (NMPC) for periodic unstable systems, and apply the method to a dual line kite that shall fly loops. The kite is described by a nonlinear unstable ODE system (which we freely distribute), and the aim is to let the kite fly a periodic figure. Our NMPC approach is based on the “infinite horizon closed loop costing” scheme to ensu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Systems & Control Letters

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2012